Kluyveromyces lactis HIS4 transcriptional regulation: similarities and differences to Saccharomyces cerevisiae HIS4 gene

Mónica Lamas-Maceiras, M. Esperanza Cerdán, M. Angeles Freire-Picos*

Facultad de Ciencias, Departamento de Biología Celular y Molecular, Universidad de La Coruña, Campus da Zapateira sln, 15071 La Coruña, Spain Received 23 July 1999

Abstract Sequence analysis of the Kluvveromyces lactis HIS4 (KIHIS4) gene promoter reveals relevant differences in comparison to the Saccharomyces cerevisiae HIS4 homologous gene. Among them are the absence of a Rap1 binding site and the presence of only three putative Gcn4 binding consensus sites instead of the five described in the S. cerevisiae promoter. Since these factors are implicated in the general control, we investigated the transcriptional regulation of the KIHIS4 gene under conditions of amino acid starvation and discovered that the mechanisms previously described for S. cerevisiae HIS4 regulation and related to general control are not functional in K. lactis. The expression analysis of the KlHIS4 gene under phosphate starvation or high adenine supply shows that factors, such as Bas1 or Bas2, involved in the basal control may also operate in a different way in K. lactis. Interestingly, and also in contrast to the HIS4 regulation in S. cerevisiae, we found domains for Nit2like and yeast-Ap1-like binding sequences. Northern analyses showed transcriptional activation under ammonia starvation and oxidative stress. The EMBL accession number for the KIHIS4 promoter is AJ238494.

© 1999 Federation of European Biochemical Societies.

Key words: Transcriptional regulation; Histidine; Amino acid; HIS4; Kluyveromyces lactis

1. Introduction

The transcriptional regulation of the *Saccharomyces cerevisiae HIS4* gene has been studied extensively [1–3] and is currently probably one of the best characterised yeast genes of the amino acid biosynthetic pathways. Its expression is carried out under two well known mechanisms: 'general control' ensuring the activation of the gene during amino acid starvation, and 'basal control'.

S. cerevisiae adapts to conditions of amino acid starvation by increasing the transcriptional rate of at least 30 genes related to amino acid biosynthesis. This response, known as general control, is mediated by the Gcn4 transcriptional activator and can be invoked by starvation of even a single amino acid [4]. The S. cerevisiae HIS4 promoter has five binding sites for the transcriptional activator Gcn4. When there is no amino acid starvation, the 'basal control' driven by factors Bas1 and Bas2(Pho2/Grf10) is responsible for HIS4 transcriptional activation. Bas1 and Bas2 are able to bind independently to the HIS4 promoter [1,5] and they also regulate the transcrip-

*Corresponding author. Fax: (34) (981) 167065.

E-mail: mafreire@mail.udc.es

Abbreviations: ORF, open reading frame; R, purines; Y, pyrimidines; W, adenine or thymine

tional activation of the *ADE* genes (*ADE2*, 5 and 7) when cells grow in an adenine-free medium. This cross-control is a consequence of the interplay between the histidine and purine biosynthetic pathways, which share common precursors and intermediates [6–8]. Bas2(Pho2), independent of Bas1, is also responsible for transcriptional regulation under phosphate limitation, as described in the *PHO5* promoter [9]. The *S. cerevisiae HIS4* gene, containing the Bas2 binding site, also responds to phosphate limitation [8].

Rap1 is a regulatory factor which has multiple roles in yeast cells, such as controlling telomere size [10,11], meiotic recombination [12], mating [13], Gcr1-mediated transcriptional activation of glycolytic genes [14,15] and also acting upon general and basal control of *HIS4* [2,16]. In the latter case, it is believed to allow the binding of other specific factors by maintaining an accessible chromatin structure [3].

Transcriptional regulation of amino acid biosynthetic genes from other yeast species, under conditions similar to those described above, is not as well documented. Although a similar regulation was first assumed, based only on the high homology of proteins encoded by homologous genes and on the assumption of a well conserved regulatory mechanism for a well conserved function, the small amount of experimental data available is in contrast with this simple model. The general control of amino acid biosynthetic enzymes is not commonly distributed within 15 yeast species [17]. Even this work did not include *Kluyveromyces lactis*, and was only based on enzymatic activities without including transcriptional studies on mRNA levels or promoter characterisations.

After cloning the *KlHIS4* gene by complementation, it was found to encode a protein with a 69% identity and 81% similarity to the multi-enzymatic protein encoded by the *S. cerevisiae HIS4* gene [18]. Herein we report the sequence of the promoter region which is responsible for its transcriptional regulation and necessary in order to allow histidine auxotrophy complementation in *S. cerevisiae*. Analyses of consensus sequences and quantification of mRNA levels show a divergent regulation of amino acid biosynthetic genes in *S. cerevisiae* and *K. lactis*.

2. Materials and methods

2.1. Yeast strains

K. lactis wild-type strain is NRRL-Y1140. Strains MW190-9B (*MATα*, *lac4*, *uraA*), pM5-3C (*MATa*, *uraA*, *Rag*+) were kindly provided by M. Wésolowski-Louvel (Lyon, France). The *S. cerevisiae* strain MC1093 (*MATa*, *his4-539*, *lys2-801*, *ura3-52*) was a gift from M. Carlson, and *S. cerevisiae* aGHI (*MATa*, *trp1-289*, *leu2-3*, *leu2-112*, *gal* Δ5) from R. Zitomer [19].

2.2. Media and culture conditions

Yeast synthetic complete (CM) and omission media CM-His (without histidine), CM-Ura (without uracil) or CM-Ade (without

adenine) were prepared, in addition to YPD and YPG (with 2% dextrose or glycerol, respectively) [20]. For ammonia and phosphate starvation conditions yeast nitrogen base without ammonium sulphate or sodium phosphate was prepared.

In order to test oxidative stress conditions, hydrogen peroxide was added to a final concentration of 2 mM [21]. Cadmium sulphate was added to the cultures to a final concentration of 3 mM. In both cases cells were grown in CM medium and shifted for 1 h to CM+ H_2O_2 or for 2 h to CM+cadmium sulphate.

DNA manipulations were performed as described in [22].

2.3. Sequencing

A 472 bp fragment was sequenced on both strands using the Sequenase kit from USB. For this purpose, serial nested deletions were obtained by DNase I treatment [23]. The sequence of the complementary strand was obtained by primer walking using the following oligonucleotides: oMFH19: 5'-AACACGGTACAACAGGCAAC-3', oMFH21: 5'-GATTTTTGCAGTGGATTGTGA-3', oMFH22: 5'-GACTGGATAAGTAAAGGTAA-3', oMFH23: 5'-TTTCCTTGC-ATCGTCTA-3' and oMFH24: 5'-CATTTTTAAGTCCGAGAA-3'.

2.4. Sequence analysis

Computer searches of binding sites for transcriptional factors were performed with the bioinformatic facilities of: YEAST-TOOLS (http://alize.ulb.ac.be/~YRT), TFSEARCH (http://pdap1.tcr.rwcp.or.jp/nph-tf) and TRANSFAC (http://padap1.tcr.rwcp.or.jp/nph-tf)

2.5. Northern analyses

Northern analyses were performed as previously described [24]. To facilitate the preparation of the *KlHIS4* probes, an internal *Hin*dIII—*Hin*dIII fragment of 0.9 kb from *KlHIS4* was cloned into pRS316 [25] as pM758. The *KlHIS4* probes were prepared either by PCR using *universal* and *reverse* primers and pM758 as a template or by *Hin*dIII digestion of the clone pM758.

For the loading correction, ribosomal RNA oligo-nucleotides RPL-5'-AGTTGGCTAGAGC and RPL-3'-GATTAAATGTAACCG, which hybridise with the *S. cerevisiae* 25S rRNA (RpL25), and also cross-hybridise with the *K. lactis* ribosomal RNA were used.

3. Results and discussion

3.1. Promoter sequence and consensus search

To define the upstream region capable of allowing the expression and regulation of the *KlHIS4* gene, the original clone PM756 was subcloned into the YCplac33 vector [26]. Plasmids containing the open reading frame and promoters of different sizes were obtained (Fig. 1). The *S. cerevisiae* strain MC1093 was used to test the complementation ability of these clones. Transformants were selected on CM—Ura medium and individual transformants replated in CM—Ura and CM—His. Cells transformed with the plasmid pKH4Pst, containing the smallest promoter, grew as well as the cells transformed with constructions containing longer promoters. Taking this result into account, we sequenced only the 472 bp upstream region of *KlHIS4* extending from the ATG start to the 5' *PstI* site (Figs. 1 and 2). This sequence is deposited in the data base (EMBL accession number AJ238494).

Computer searches on the *KlHIS4* promoter revealed the presence of consensus binding sequences for transcriptional activators involved in *S. cerevisiae HIS4* basal control (under non-limited amino acid conditions) (Fig. 2A). The sequence GACAAA for Bas1 binding [27] is present at position —396 and a sequence partially matching TGACTC, also defined as a Bas1 binding site [27], located at —382. Although the consensus for Bas2 (Pho2) binding was initially proposed as (T/C)TAA(T/A)T(T/G)AAT [16] or as AAATTAGTTAATTAATT [3], it does not have a very well defined consensus, and is generally assumed to be an A/T rich sequence [28]. A putative Bas2 binding site, AAATTcGTcccTTttaa, is located at position —365 in the promoter sequence and contiguous to the Bas1 site at position —382.

As regards putative sites for Gcn4 defined by the sequences TGACTC or TGAATCCAT [1] and more recently by the consensus RRTGACTCTTT [29], only three Gcn4 binding sites were found at positions: -415, -208 and -301 on the KlHIS4 promoter, and only one is placed relatively close 3' to the Bas1-Bas2 targets. In S. cerevisiae (Fig. 2B) there are five Gcn4 binding sites on the HIS4 promoter but only one (denoted as sequence C, at position -194) is used preferentially; this C sequence partially overlaps with a Rap1 binding site. The latter factor is absolutely required for HIS4 transcriptional activation in S. cerevisiae by both Gcn4 and Bas1-Bas2 systems. Although Rap1 binding sites may be found in the K. lactis promoter, they are highly degenerated. The KlRAP1 homologue was cloned [30]; its binding sequence was defined as the consensus 5'-AYCYRTRCAYYW-3'. This consensus does not appear on the KlHIS4 promoter.

Surprisingly, the consensus search provided information about the existence of putative binding sites for YAp1 (consensus TGASTCAG, TFSEARCH), a transcriptional activator in response to oxidative stress, at positions -419 and -206. The YAP1 and YAP2 genes play a major role in S. cerevisiae in regulating the adaptive response to oxidative stress [32]. A YAPI homologue has been cloned in K. lactis and its role in transcriptional activation through the Ap1-response element (ARE) when cells are exposed to H₂O₂ has been demonstrated [21]. This regulatory system also protects the K. lactis cells from cadmium damage since the $\Delta KlAp1$ mutant strain is hyper sensitive to this metal [21]. It is also interesting to take notice of the overlapping of the YAp1-like and the putative Gcn4 binding site at position -206. At positions -81 and -359 on the KlHIS4 promoter we also found sequences similar to the Neurospora Nit2p and S. cerevisiae NIT family element (GATAAG) [29] binding sites related to nitrogen starvation (Fig. 2A). Since regulation by oxidative stress or nitrogen starvation has not been described for the S. cerevisiae HIS4 gene, a search for the related factors was carried out in the promoter of the S. cerevisiae homologous

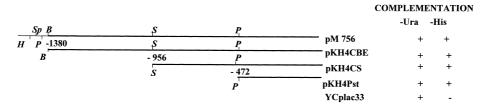


Fig. 1. Histidine auxotrophic complementation analysis of different KIHIS4 size promoters. B, BamHI; S, SaII; Sp, SphI; H, HindIII; P, PstI.

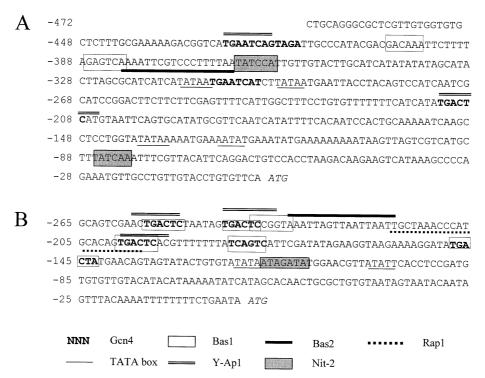


Fig. 2. A: Sequence of KlHIS4 promoter and relevant consensus for transcriptional factors. B: S. cerevisiae HIS4 promoter (EMBL J01331) [31] showing relevant HIS4 regulatory elements [3,8] and positions for Nit-2-like and YAp1 consensus.

gene. The search revealed three YAp1 binding sites at positions -192, -235 and -248 and a single Nit2-like binding site at position -110 (Fig. 2B).

3.2. Regulation of genes related to amino acid biosynthesis in K. lactis: general and basal control

K. lactis NRRLY-1140 cells were grown in synthetic complete medium or under amino acid starvation conditions and KlHIS4 mRNA levels were determined by Northern analyses. At least four independent experiments were done to test each condition. An insignificant increase (an average of 1.2 times)

in *KlHIS4* mRNA levels was detected when histidine was omitted from the culture (Fig. 3A, lanes 3 and 4). In order to see if this absence of activation in response to the general control was strain-dependent, other *K. lactis* strains, PM5-C and MW190-9B, were tested with similar results (an average increase of 1.5; Fig. 3C). In a control experiment under identical laboratory conditions, a 10-fold increase was detected for the homologous gene *HIS4* from *S. cerevisiae* in strain aGH1 (Fig. 3A, lanes 7 and 8).

In S. cerevisiae other amino acid biosynthetic genes, including those involved in tryptophan and leucine production, are

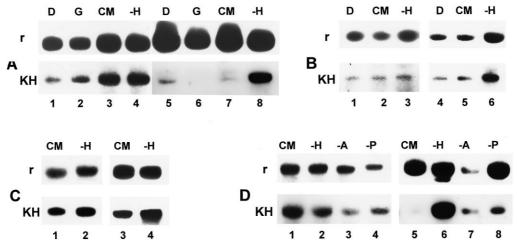


Fig. 3. Transcriptional analysis of general and basal control. A: Comparison of *K. lactis* NRRLY-1140 (lanes 1-4) and *S. cerevisiae* aGHI (lanes 5-8) response to carbon source and histidine starvation. B: Analysis of *KlHIS4* regulation in *S. cerevisiae his4* strain MC1093 (lanes 4-6), The *K. lactis* strain NRRL-Y1140 was included as control (lanes 1-3). C: Analysis of general control in other *K. lactis* strains: Mw190-9B (lanes 1,2), pM5-3C (lanes 3,4). D: Basal control in *K. lactis* NRRLY-1140 (lanes 1-4) and aGH1 strain (lanes 5-8). D=YPD; G=YPG; CM=complete medium; -H=CM-His; Cd=CM+cadmium; -P=CM phosphate-starved. Probes: r: ribosomal 25S; KH=*KlHIS4*.

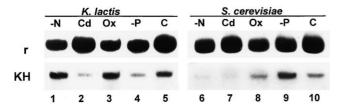


Fig. 4. Northern analysis showing *KlHIS4* and *ScHIS4* regulation under stress conditions and ammonia starvation. C = control culture (CM, complete medium); Ox = oxidative stress (CM+H₂O₂); Cd = CM + Cd; and -P = CM phosphate-starved. Probes: r: ribosomal 25S; KH = KlHIS4.

under regulation by general control and the corresponding promoters have Gcn4 binding sites. We selected two other *K. lactis* genes related to amino acid biosynthesis to check if they were activated during amino acid starvation but the results obtained (data not shown) indicated that the general control is not functional for these genes either. Computer analyses of *KlLEU2* [33] and *KlTRP1* [34] promoters showed only a Gcn4 binding site on each, probably too close to the ATG to be relevant. There are no Rap1 binding sites and several Nit2 sequences are distributed along both promoters.

As commented above (see Fig. 2A), only three Gcn4 binding sites were found at positions -415, -208 and -301 on the KlHIS4 promoter, while in the HIS4 gene from S. cerevisiae there are five. In order to see if the lack of regulation related to the general control could be attributed to the structure of the promoters or to a different action of trans-acting factors, the heterologous expression of the KlHIS4 gene was determined in S. cerevisiae transformed cells. Strain MC1093 was transformed with the plasmid pKH4CBE, depicted in Fig. 1, containing a big (1380 bp) promoter driving KlHIS4 expression. Transformants were selected on CM-Ura plates. Overnight cultures of independent transformants were done in CM-Ura and the next day cells were used to inoculate three different media, YPD, CM and CM-His and the cultures maintained at 30°C until A_{600} reached 0.6. Aliquots of each culture were plated on YPD and selective medium (CM-Ura) to verify that plasmid loss in non-selective (CM) medium was not significant. The results of the heterologous expression are shown in Fig. 3B and (after normalising values) clearly demonstrate that there is no significant transcriptional activation in CM-His medium (compare lanes 5 and 6). Therefore, although the KlHIS4 gene is expressed in a yeast strain in which Gcn4 is functional, since aGHI is wild-type for this factor, the general control does not act on this promoter even in a S. cerevisiae genetic background. We might consider two possible explanations: one is the fact that there are only three Gcn4 putative binding sites in the KlHIS4 promoter, however, although five sites exist in the S. cerevisiae HIS4 promoter, only sequence C has a high affinity for Gcn4 binding and this site is responsible for the major activation [8]. Thus in K. lactis we would expect to see activation if any of the two sequences were functional. On the other hand, the fact that there is not a well conserved Rapl binding site on the KlHIS4 promoter may be an important point to take into account. In S. cerevisiae Raplp has been shown to be necessary for basal and general control of the HIS4 gene. In a wildtype background for Gcn4, Bas1 and Bas2, the presence of mutations in the Rap1 binding site cause poor growth on the

medium without histidine and a drastic decrease in *HIS4* mRNA levels. Since the *RAP1* homologous gene has been cloned in *K. lactis*, we cannot attribute the lack of this factor in this species as an explanation for the absence of general control. On other hand, since the *K. lactis* gene, under regulation of its native promoter (without a well conserved Rap1 binding site), is expressed in *S. cerevisiae* conferring a His+phenotype on these cells and maintaining its own transcriptional pattern (Fig. 3B), there are probably conserved mechanisms that would allow an adequate regulation. For instance, a different nucleosome positioning along the *K. lactis* promoter might allow its characteristic transcriptional expression.

It is also interesting to note the different behaviour of *KlHIS4* and *S. cerevisiae HIS4* in glucose or glycerol growing conditions. In *KlHIS4* there is a similar level in both carbon sources with an average increase of 1.5 times in glycerol growing cells (Fig. 3A, lanes 1 and 2). However, we find an average four-fold decrease in *S. cerevisiae HIS4* levels in glycerol growing cells (Fig. 3A, lanes 5 and 6). Even at this point it is not possible to offer an explanation based on our data or the sequences found or those on *S. cerevisiae* which we consider relevant to note.

The KlHIS4 promoter contains Bas1- and Bas2-like binding sequences (Fig. 2A) and in S. cerevisiae, the existence of a transcriptional activation in the phosphate starvation medium which is mediated by Bas2 [8] has been previously described. Bas1 and Bas2 acting together are common regulators of purine and histidine biosynthesis and a reduction of the protein encoded by HIS4 was observed in cells grown in 0.15 mM adenine final concentration [6]. To test the importance of the basal control in the KlHIS4 gene we also measured KlHIS4 mRNA levels under these two conditions. For adenine repression 0.30 mM final adenine concentration was used in the CM medium. As shown in Fig. 3D, we did not find significant differences in mRNA levels as compared to the control medium in any of the conditions tested, just a slight decrease in adenine and phosphate starvation (compare lane 1 with lanes 3 and 4) (also for phosphate see Fig. 4, lanes 1 and 4), while a control carried out for the S. cerevisiae gene in the S. cerevisiae strain aGHI showed the expected regulatory pattern under these conditions (a three-fold increase under phosphate starvation and three-fold decrease for adenine repression) (compare lane 5 with lanes 7 and 8). Therefore, the basal control through the Bas factors previously described does not work for the KlHIS4 gene.

3.3. The KIHIS4 gene is regulated by nitrogen source limitation and oxidative stress

The existence of putative binding sites for Nit2-like and YAp1 like factors in the *KlHIS4* promoter prompted us to check regulation by nitrogen source limitation, oxidative stress and Cd. Cells were grown in CM medium until A_{600} reached 0.5; they were then pelleted, washed and divided into four equivalent fractions to inoculate the CM medium (control), CM medium without ammonium sulphate (to check nitrogen limitation), CM medium plus cadmium or CM medium plus H_2O_2 (to test YAp1-like activation). Fig. 4 shows that there is a two-fold decrease in mRNA levels by cadmium (lane 2) and a significant increase (approximately two-fold) under nitrogen starvation and oxidative conditions (lanes 1 and 3) when compared with the control (lane 5). Since this regulation was not described in the literature for the *S. cere*-

visiae HIS4 gene, we carried out parallel experiments in the *S. cerevisiae* strain aGHI and found that any of these responses may be produced in this yeast (Fig. 4). And moreover, there is a 2.3-fold decrease under ammonia starvation.

The changes in mRNA levels observed in K. lactis are in agreement with the functional significance of the regulatory sites, Nit2-like and YAp1, found on the promoter. In K. lactis differences in the regulation of KlHIS4 transcription are more relevant under nitrogen limitation or oxidative stress than under amino acid starvation. Since respiratory processes produce reactive oxygen species, in a respiratory yeast like K. lactis the utilisation of these molecules to activate the biosynthetic pathways and to allow rapid growth could be a useful regulatory mechanism. The extent to which it has physiological significance and could serve as a differential mechanism in respiratory versus fermentative yeast remains to be elucidated. However, in the course of this research we have observed a remarkable difference in the expression of the HIS genes in K. lactis and S. cerevisiae when comparing respiratory conditions (glycerol medium) and respiro-fermentative conditions (glucose medium). The expression of the gene from S. cerevisiae decreases four times in respiratory conditions, while in K. *lactis* there is some increase (1.6-fold) (Fig. 3A).

In summary, the expression of the *KlHIS4* gene differs notably from the one previously described for the *S. cerevisiae* homologue *HIS4*. First of all, the gene does not respond significantly to amino acid starvation (general control) adenine repression or low phosphate levels (basal control) and the absence of the general control may be extended to other genes from *K. lactis* related to amino acid biosynthesis. Secondly, the gene is activated by nitrogen limitation and oxidative stress, suggesting that the Nit-2-like and YAp1-like sites are functional, although further research needs to be carried out in order to characterise the key sites exerting this regulation. The different transcriptional regulations probably reflect the physiological differences in amino acid metabolism between the two organisms.

Acknowledgements: This research was supported by Grants from XUGA 10301B98 and DGCYT PB96-1090. M. Lamas' work was supported by a fellowship from the Universidad de La Coruña. We would also like thank Rosa Diaz for technical support.

References

- [1] Arndt, K.T. and Fink, G.R. (1986) Proc. Natl. Acad. Sci. USA 83, 8516–8520.
- [2] Arndt, K.T., Styles, C.A. and Fink, G.R. (1987) Science 237, 874–880.
- [3] Devlin, C., Tice-Baldwin, K., Shore, D. and Arndt, K.T. (1991) Mol. Cell. Biol. 11, 3642–3651.

- [4] Hinnebusch, A. (1992) in: The Molecular Biology of the Yeast Saccharomyces (Jones, E.W., Pringle, J.R. and Broach, J.R., Eds.), Vol. 2, pp. 319–414, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- [5] Pinson, B., Sagot, I., Gabrielsen, O.S. and Daignan-Fornier, B. (1998) Nucleic Acids Res. 26, 3977–3985.
- [6] Denis, V., Boucherie, H., Monribot, C.H. and Daignan-Fornier, B. (1998) Mol. Microbiol. 30, 557–566.
- [7] Zhang, F., Kirouac, M., Zhu, N., Hinnebusch, A.G. and Rolfes, R. (1997) Mol. Cell. Biol. 17, 3272–3283.
- [8] Tice-Baldwin, K., Fink, G.R. and Arndt, K.T. (1989) Science 246, 931–935.
- [9] Shao, D., Creasy, C.L. and Bergman, L.W. (1996) Mol. Gen. Genet. 251, 358–364.
- [10] Buchman, A.R., Lue, N.F. and Kornberg, R.D. (1998) Mol. Cell. Biol. 8, 5086–5099.
- [11] Krauskopf, A. and Blackburn, E.H. (1996) Nature 383, 354-357.
- [12] White, M.A., Dominska, M. and Petes, T.D. (1993) Proc. Natl. Acad. Sci. USA 90, 6621–6625.
- [13] Gilson, E., Muller, T., Sogo, J., Laroche, T. and Gasser, S.M. (1994) Nucleic Acids Res. 22, 5310–5320.
- [14] Tornow, J., Zeng, X., Gao, W. and Santangelo, G.M. (1993) EMBO J. 12, 2431–2437.
- [15] Uemura, H., Koshio, M., Inoue, Y., Lopez, C.M. and Baker, H.V. (1997) Genetics 147, 521–532.
- [16] Sytelov, V.V. and Cooper, T.G. (1995) Yeast 11, 1439-1484.
- [17] Bode, R., Schüssler, K., Schmidt, H.M., Hammer, T. and Birnbaum, D. (1990) J. Basic Microbiol. 30, 31–35.
- [18] Freire-Picos, M.A., Hampsey, M. and Cerdan, M.E. (1998) Yeast 14, 687–691.
- [19] Rosemblum-Vos, L.S., Rhodes, L., Evangelista, C.C., Boayke, K.A., Wick, P. and Zitomer, R.S. (1991) Mol. Cell. Biol. 11, 5639–5647.
- [20] Zitomer, R.S. and Hall, B.D. (1976) J. Biol. Chem. 251, 6320– 6326
- [21] Billard, P., Dumond, H. and Bolotin-Fukuhara, M. (1997) Mol. Gen. Genet. 257, 62–70.
- [22] Sambrook, J., Maniatis, T. and Fritsch, E.F. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- [23] Anderson, S. (1981) Nucleic Acids Res. 9, 3015-3027.
- [24] Freire-Picos, M.A., Hollenberg, C.P., Breunig, K.D. and Cerdán, M.E. (1995) FEBS Lett. 360, 39–42.
- [25] Sikorski, R.S. and Hieter, P. (1989) Genetics 122, 19–27.
- [26] Gietz, R.D. and Sugino, A. (1988) Gene 74, 527-534.
- [27] Daignan Fornier, B. and Fink, G.R. (1992) Proc. Natl. Acad. Sci. USA 89, 6746–6750.
- [28] Magbanua, J.P., Fuisawa, K., Ogawa, N. and Oshima, Y. (1997) Yeast 13, 1299–1308.
- [29] Van Helden, J., Andre, B. and Collado-Vides, J. (1998) J. Mol. Biol. 281, 827–842.
- [30] Larson, G.P., Castanotto, D., Rossi, J.J. and Malafa, M.P. (1994) Gene 150, 35–41.
- [31] Donahue, T.F., Farabaugh, P.J. and Fink, G.R. (1982) Gene 18, 47–59
- [32] Stephen, D.W., Rivers, S.L. and Jamieson, D.J. (1995) Mol. Microbiol. 16, 415–423.
- [33] Zang, Y.P., Chen, X.J., Li, Y.Y. and Fukuhara, H. (1992) Yeast 8, 801–804.
- [34] Stark, M.J.R. and Milner, S.S. (1989) Yeast 5, 35-50.